DS503

BIG DATA MANAGEMENT

Final Project: Join Over Skewed Dataset

Professor: Mohammed Eltabakh

Submitted by: Kratika Agrawal & Naisargi Dave

INTRODUCTION

The focus of our project is to join two big datasets where one of the datasets is skewed over a few
keys. The Joining of two large datasets can be achieved with the use of MapReduce technique.
Several frameworks like Hadoop or Spark allow us to perform the join by Mapping records key by
key and pass all records that have the same join key to single Reducer after it passes through the
shuffle and sort phase. All Reducers work in parallel to process the join and save their partitions on
HDFS. This type of join is called the Re-partition join. In a scenario, when one of the two datasets are
small (fewer MB), the task can be performed in Mappers only without involving Reducers and saving
computation over expensive Shuffle and Sort modules. This type of join is called Broadcast join or
Replicated join. In Broadcast join, the smaller dataset is cached and replicated to all Mappers. The
join is performed internally in mappers by setting up lookup for every record of the large dataset to
the entire smaller datafile. However, when both datasets are huge and one of them is skewed over
few keys, Re-partition join leads to load imbalance on Reducers. Load imbalance on Reducer occurs
because one Reducer gets a skewed key and hence, has to process a lot of records. This Reducer is
working for a very long time. Whereas, all the other reducers that receive non-skewed keys process

records quickly and stay idle. This results in slower computation.

u

.

5
5
2
—i- =
2
_;r| el
_5’)

Figure 1 : Load Imbalance on Reducer

We try to solve this problem by scanning the data and identifying skewed keys to divide the join

operation for skewed keys and non-skewed keys.

RELATED WORK

This problem has previously been solved by Nadeem Moidu in 2015 using the Hive framework. The
solution is to perform optimized join over two structured datasets where one of the collections

contain a few number of skewed records over the join key. They keep following assumptions:

> Itis known that one of the dataset is skewed.
> All the join keys over which the data is skewed are already known.

> There is skewness on a few keys only.

ASSUMPTIONS

We inherit our solution from the solution provided by Moidu. However, we relax the assumption
that we already know those keys on which the dataset is skewed. We scan the skewed dataset and
identify all join keys on which the skewness exists. Along with this, since we make use of Spark
MapReduce technique to implement optimized join, the solution holds good for unstructured or

semi-structured datasets as well.

DATASET

For simplicity, we used two datasets of Customers and their Transactions. Customer data consists of
approximately 1M unique records with information like CustomerID, CustomerName, CustomerAge,
Gender, CountryCode and Salary for each customer. Transaction data is huge with approximately
13M transactions which includes TransactionID, CustomerlID, TransactionTotal,
TransactionNumltems, TransactionDescription. Transactions are skewed over few customerlds
(Customer Ids: 7426, 5, 98775, 384, 67452, 2486 in our case). Also, we don’t hold the assumption

that we have prior knowledge of skewed keys. We scan transaction dataset to identify skewness.

CUSTOMERS
CustiD |Mame ige |Gender | CountryCode | Salary
1|cokgislgnizfamfgo | 10)female 2| A503.526
2|zjaabljpi 30|female 1 728.2957
whonike|gueviyp 2| mala 4 B3B0.577
d|wkcrndsynpamtpawda) | 35| male 8| 111035024
5| pwipgghrelzf | 25|male 5 14455253
6| ohulxufjjylzmpbe 22|female 8 24312853
7| wibavpakhsmuyu 65| male 1 31M
&|sspgzubing | 20[male 10{ 4163094
9|ingyjigoisxiagvodub | b4|female 2 71159313
10|gvonsbnafugrghhybda | 17{female 9| 43L1552

Figure 2: Customer Dataset

TRANSACTIONS

TransiD |CustiD | TransTotal TransNumitems TransDesc
1 4| 36991458 i uejkyfdgsfruseakehaovookmamopryefeszuskpps
3 B| BE3.BAEIT 6 yrafouzmypy|psysipwogex
1 6| 36317325 1 dgyordaslygasarbeholpyavkugefnand
4 5 128.53055 7 wkryoyheyznggaineticetkcdgmmitfsgkwpakuces
3 5| 428.3%365 A meatbpapaczshbnbzklepd o pilmnraeanhmgloalnticpbad
& 5| 150.15614 1 nagcvarremijlswymkistgchay
7 5 146523466 & dyvoguytpdilspqocegtjovulsruns:
g 5(5734631 3 tirzfidehusfrlefitulohafipmamfgiprdncgminbagck
5 5 102.65818 B hzdewelzovcnstrehfzhalomcklygghsmgdhmfivm
0 5| 37.B84157 B wifrgmwutcbemhzhshksakwakpgbll fawarmmbrenky
11 5| 413.52927 7 vougfmzwbidledinihagayfmuphogngsmtlb
11 5| 832467 2 cadnighjoerfolhkaipmoceneclzpgunpipimeghdetwagi
13 7| 55506687 10 fjdoizwrnftjcquibhvkgkumigsesoamwsnowalbiysocigp
] 1] e 7 ghvuutshpreapayupykig
15 2| 258467, 8 gjwhzjropgaucqolyvigretzct |jxavrtrapat rbelljza
16 2| '9.309454 Tvywibfobhnpysf|gibraiguhdygitvyovikonewghwkixgaa
17 2| 239.03754 § hnxerhayzmymtcngtifygfichwiswngmargasghro
1E 2| 269.31647 1 wrbtyhgmlefumcgkuamzivygireh
15 2| 468.29593 1 toypienssvydripnzhetagiujs
il 2| 5320054 4 foecmmy pinpehituugbmvwa
A 7| 411.55137 10 srgmelowktahaottwoegspliwomo:
) 5 479.8433 G [zhgkyovznwihaasolesp
H 3 3852001 1 ticzfimngbtpeunpodfzamovvalssigsdamaghya
| 5| 59.818BA T hwaalhlpzketmpaylwgrgtuk)kufohkfidgygbkntnanatogul
Figure 3: Transactions Dataset
TECHNICAL DETAILS

File JoinOverSkewedDataset.scala consists of code for implementing the join with-
Argument[0] : Customers.csv file path generated using CreateDataset.java

Argument[1] : Transactions.csv file path generated using CreateDataset.java

The task of joining Customers and Transactions dataset, where Transactions are skewed on few
Customer lIds, i.e. some of the Customers have a very large number of transactions while rest have
few transactions. The join has been implemented using Spark framework in Scala language using

SparkSQL DataFrames. The process is executed in following steps:

Step 1- Import Customers and Transactions datasets into DataFrames:

Use SparkSQL to define schema and import the Customers and Transactions datasets into respective

DataFrames for further processing.

Step 2- Identify the join keys over which the transactions table is skewed:

The idea of Transactions being skewed over some join keys is that some of the customers are
processing much more transactions than others. It's almost impossible to scan huge Transaction data
manually and exactly identify which all keys are more frequent. Therefore, if Transaction is highly
skewed on some customer keys in large dataset and we attempt to randomly choose a Transaction

record, the probability of it belonging to skewed customer key is higher.

We use the same mathematical concept, and take 10% random record samples of transactions,
group by keys and count the number of transactions belonging to each join key. This gives us a clear

idea of the skewness and we can easily gather all keys that cause it.

et e +
|CustID|count|
g e] +
| 7426|59886 |
| 5|56789]
| 98775|45953|
| 384]|43815]|
| 67452|35743
| 2486|31895]|
| 6587 22|
| 797 22|
| 85| 22|
| 952 21|
| 6| 21|
| 45325] 19|
| 77| 19|
| 671] 19|
| 15| 19|
| 6160 16|
| 773 16|
;e e +

Figure 4: List of Join keys in descending order of their number of transactions

Step 3- Split Customer Data table:

Once we identify ids on which Transactions are skewed, Split the Customer dataset into two
separate DataFrames: Skewed_Customers and Non-Skewed_Customers. Skewed_Customer contains
all customer ids that cause skewness in transactions and Non-Skewed Customer contains the rest of

the customers.

Step 4- Re-partition join between Non-Skewed Customers and Transactions:

Implemented Re-partition join between Non-Skewed Customers and Transactions where Customer
Ids match. The join will only select Transactions that belong to non-skewed Customer Ids. All the Ids
belonging to one join key, go to one Reducer after the sort or shuffle phase. Since, there’s no
skewness in the data and all keys have similar frequencies, all Reducers receive the same data load

for processing. This process optimizes the joining time for the non-skewed data.

6551435

uejkyfdgsfiouseakehacvocokmamgpayefesuskpps

1 4 8|
1 B| 68354827 &|yxafousmvpy|psysipwogex
5 6| 36317325 I|dgyorciastygasarbeholpervkugefnimd
m I 4 5| 13883055 T|wiiyoyhryznggaisstieezkedgmmttsqkwpakuove
— - - - . 5 5| 428 33885 4|meozbpogecgahhnbakiepdozp|kmpmeanhmgicaintloptcd
eokaindjgnifaminn 10]temale 1 460352 6 5| 15015614 1| e evarrsenijlseymkinngsfoy
q 7 5| 146.33466 &)d ilspgoc ulsrunsz
ﬁuhmlﬁiﬂllimm Zlfefrlile B ML B 5 5734631 1mr;nﬁdmngkltljﬁ:rpmmfguvdumlnheqﬁt
Twibavpathsmvyy B5lmale 71 unM _ 9 [10065818 &|hedewekzovenstrehfzhaiomeklygghsmedhmfive
10 5 27884157 &|wif mgmwutcemhzhshisakvvakpgbl e cemmbnznky
Blstocauhing Nijmale 433 Re-partition n s e 7|wduxfmrubidedinihageyfmughegnasmil
[T—— : 12 5| B37.4867 Faxdnlahjezrfolhkzjpmaowyvefzpgunpipmnghdetegl
imml[cammdm female 1 1 jmn 13 7| 55.506687 10| ljdoizwmitjcqozbhvkgkumipsexcarmwsngralbivacersp
10lgvombeatugrohiybda | 17|female § 4301552 1 1 664 Tlgkvuutxhpoveopojulaykbs
o 15 2| 15645747 8|q|whzjzopgrucgokyvkgretzctnmrtrapatrielljza
3{whcnikejgurtyp 52)male 4 838057 16, 3 5309454 T vpwitcihnpyxljg]breigabdygtvyavikaneghkingaa
‘mmmp‘:mm asmah 8| 11100500 17, 1| 13903754 Slhneorhzyzmymtongatizygflichwkswngmgrggpgbra
1B 2| 26531547 1{wibtyhgmlefmcghurmaiwygireh
15 2| 6823533 3|tory pheanvswydrigvehetacjujs
20 2| 532.0054 Affoecmmypinpghrtuugbmyws
21 7| 41159137 10|srgmelowktahaoffacegapliviemoz
2 5| 473 B{lzhgieprymwthaasaleap
23 3| 3853021 tzcatymagbtpeunjpdfzamey ig jhys
24 5| 55813882 Thwoalhlpzketmpwlwgratukjufbhkfidgyqbimtraretoqul

Figure 5: Repartition Join between Non-Skewed_Customers and Transactions

Step 5- Broadcast join between Skewed Customers and Transactions:

We keep an assumption that the skewness is over a small number of keys. Thus, it's easy to cache

Skewed Customer DataFrame and broadcast it to all Mappers. Performed Broadcast join between

Skewed_Customers and Transactions, which saved expensive computation of Sort, Shuffle and

Reducer phase. Thereby, drastically reducing the processing time.

2|zjaablxjpi 30|female 1| 728.2957
5|pwipgghrrizf 25|male 9| 144.55263
Figure 6 : Customers data that is cached
1]] 36591498 E|uekytdgsthuseakehaorookmamgpayetessuskops
2 | 68334827 6| yxafouxmvayjpsysipwogex
3 6| 363.17325 #|dgyarciasiygasarbeholpvaviugefnand
| 5| 12823055 7| wkryoyhrznggaizetiserkcdgmmitfsgkwpakucee
5 5| 424.39865 4|meazbpopacgahhnbrklepdosjlomnroganhmgtesintiopted
I 5| 150.15614 1|nazovarmemijlswymkintgefoy
1 5| 146.23466 &|dywoquytpdilspgocegtiovulsrunsz
B 5| 5734631 3|tzraflidehuetnketkitulohatgzremigijvdnegminbegek
1 zjasbhiipi 0female 1 7mmsT) 5| 10255818 6| nzdewekzovenstrehfzhaiomcklygghsmad hanfivm
Slowpgahnl jmsle rETTTY ~ W 5| et Sw|fm:qmwuh:lu:mhzhshksahruakqullﬂwmnmhnznk-,'
11 5| 413.52927 7|vduximzwbkledinihxgeyfmughogngsmtlb
Br_oadcast 12 5| 8324867 2|awndnlahjeerfolhkzjpemgowpacfapgungipimrehdetwag
]’mn 13 7| 55.506687 10|fjegizwm fjcgozbhvighuemipeevgamw snquolbiyccgp
14 1| 16056314, 7|gvuuizhpoveopojujpyig
15 2| 25845747 B|qjwhijzopgruaqokyvkgretzctljivrirapatrielljs
15 2| 5309454 7|wywribfobhnpyxfig brwiguhdygtvyowckgnevahwkingaa
17 3| 22903754, 3| hnxorhzyzmymtenggtifaygfichwiswngmgrgapgbre
18] 2| 26931647 1|webtyhgmilefemogkuxmzinwygirah
13 2| 468.23553 3{toyplexnswydrigeehetadufs
i 2| 5310054, Alfoecmmy g npghrtuugbmna
1 7| 41159137 10[srgmelowktahactfecegaplivemo:
22 5| 4798433 6| lzhgkyovenwihaasoleap
23 3| 3852021 2|tcf|mngbtpewnpdfzamonalesiqsdamaliya
L 5| 54.518882 7|hwoalhlpzketmpubagrgtukjkutbhifidgygbkntnzrytequl

Figure 7: Broadcast Join between Skewed_Customer and Transactions

BENEFITS:

> Small number of skewed keys do not become bottleneck during the Reduce phase. As we
saw in Re-Partition Join for skewed dataset, reducer load imbalance takes place which acts
as a bottleneck for the entire process. The algorithm implemented in this report prevents
that from happening.

> Computation is done faster. Converting a part of the Re-Partition Join over skewed dataset
to a Broadcast Join, which is a map-only job, makes it a faster process.

> Efficient use of Reducers. Because the load is distributed uniformly over all the Reducers,

they are utilized to their maximum potential.

EXPERIMENTS:

Experiment | :

Initially we created a Customers dataset with 50,000 records and Transactions dataset with 5M
records. We skewed the Transactions Dataset on one key and performed the experiment. We found
out that the time difference between the two methods was not significant. We then moved on to

increase the dataset size.
Experiment Il :

The Customers dataset was made of 1M records and Transactions dataset was made of 13M records.
Transactions dataset was skewed over key (Customer Ids): 5, 384, 2486, 7426, 67452, 98775. We
performed the Re-partition join between Customers table and Transaction table on Customer Id. The

process is run on Spark Map Reduce framework and takes a total of 10.236831 seconds.

The time taken to perform the join by implementing the optimization is less. The Broadcast Join
between the Skewed Customers and Transactions takes 0.019531 seconds. The Re-Partition Join
between the Non-Skewed_Customers and Transactions takes 3.772760 seconds. So, the total time
taken to perform the join is 3.792291 seconds which is much lesser compared to the initial

10.236831 seconds.

With these experiments, we see that the optimization saved approximately 60% of the time for

computation, eliminating the imbalance from Reducers.

Time taken by various Map Reduce processes

S— _

Re-partition join with non-skewed keys

MR Processes

Broadcast join with skewed keys

2 A 6 8 10 2
Time ke by the pricess Figure 8: Time taken by various Map Reduce jobs

o

