

DS503

BIG DATA MANAGEMENT

Final Project: Join Over Skewed Dataset

Professor: Mohammed Eltabakh

Submitted by: Kratika Agrawal & Naisargi Dave

INTRODUCTION

The focus of our project is to join two big datasets where one of the datasets is skewed over a few

keys. The Joining of two large datasets can be achieved with the use of MapReduce technique.

Several frameworks like Hadoop or Spark allow us to perform the join by Mapping records key by

key and pass all records that have the same join key to single Reducer after it passes through the

shuffle and sort phase. All Reducers work in parallel to process the join and save their partitions on

HDFS. This type of join is called the Re-partition join. In a scenario, when one of the two datasets are

small (fewer MB), the task can be performed in Mappers only without involving Reducers and saving

computation over expensive Shuffle and Sort modules. This type of join is called Broadcast join or

Replicated join. In Broadcast join, the smaller dataset is cached and replicated to all Mappers. The

join is performed internally in mappers by setting up lookup for every record of the large dataset to

the entire smaller datafile. However, when both datasets are huge and one of them is skewed over

few keys, Re-partition join leads to load imbalance on Reducers. Load imbalance on Reducer occurs

because one Reducer gets a skewed key and hence, has to process a lot of records. This Reducer is

working for a very long time. Whereas, all the other reducers that receive non-skewed keys process

records quickly and stay idle. This results in slower computation.

Figure 1 : Load Imbalance on Reducer

We try to solve this problem by scanning the data and identifying skewed keys to divide the join

operation for skewed keys and non-skewed keys.

RELATED WORK

This problem has previously been solved by Nadeem Moidu in 2015 using the Hive framework. The

solution is to perform optimized join over two structured datasets where one of the collections

contain a few number of skewed records over the join key. They keep following assumptions:

➢ It is known that one of the dataset is skewed.

➢ All the join keys over which the data is skewed are already known.

➢ There is skewness on a few keys only.

ASSUMPTIONS

We inherit our solution from the solution provided by Moidu. However, we relax the assumption

that we already know those keys on which the dataset is skewed. We scan the skewed dataset and

identify all join keys on which the skewness exists. Along with this, since we make use of Spark

MapReduce technique to implement optimized join, the solution holds good for unstructured or

semi-structured datasets as well.

DATASET

For simplicity, we used two datasets of Customers and their Transactions. Customer data consists of

approximately 1M unique records with information like CustomerID, CustomerName, CustomerAge,

Gender, CountryCode and Salary for each customer. Transaction data is huge with approximately

13M transactions which includes TransactionID, CustomerID, TransactionTotal,

TransactionNumItems, TransactionDescription. Transactions are skewed over few customerIds

(Customer Ids: 7426, 5, 98775, 384, 67452, 2486 in our case). Also, we don’t hold the assumption

that we have prior knowledge of skewed keys. We scan transaction dataset to identify skewness.

 ​Figure 2: Customer Dataset

 ​Figure 3: Transactions Dataset

TECHNICAL DETAILS

File JoinOverSkewedDataset.scala consists of code for implementing the join with-

 Argument[0] : Customers.csv file path generated using CreateDataset.java

Argument[1] : Transactions.csv file path generated using CreateDataset.java

The task of joining Customers and Transactions dataset, where Transactions are skewed on few

Customer Ids, i.e. some of the Customers have a very large number of transactions while rest have

few transactions. The join has been implemented using Spark framework in Scala language using

SparkSQL DataFrames. The process is executed in following steps:

Step 1- Import Customers and Transactions datasets into DataFrames:

Use SparkSQL to define schema and import the Customers and Transactions datasets into respective

DataFrames for further processing.

Step 2- Identify the join keys over which the transactions table is skewed:

The idea of Transactions being skewed over some join keys is that some of the customers are

processing much more transactions than others. It’s almost impossible to scan huge Transaction data

manually and exactly identify which all keys are more frequent. Therefore, if Transaction is highly

skewed on some customer keys in large dataset and we attempt to randomly choose a Transaction

record, the probability of it belonging to skewed customer key is higher.

We use the same mathematical concept, and take 10% random record samples of transactions,

group by keys and count the number of transactions belonging to each join key. This gives us a clear

idea of the skewness and we can easily gather all keys that cause it.

 Figure 4: List of Join keys in descending order of their number of transactions

Step 3- Split Customer Data table:

Once we identify ids on which Transactions are skewed, Split the Customer dataset into two

separate DataFrames: Skewed_Customers and Non-Skewed_Customers. Skewed_Customer contains

all customer ids that cause skewness in transactions and Non-Skewed Customer contains the rest of

the customers.

Step 4- Re-partition join between Non-Skewed Customers and Transactions:

Implemented Re-partition join between Non-Skewed Customers and Transactions where Customer

Ids match. The join will only select Transactions that belong to non-skewed Customer Ids. All the Ids

belonging to one join key, go to one Reducer after the sort or shuffle phase. Since, there’s no

skewness in the data and all keys have similar frequencies, all Reducers receive the same data load

for processing. This process optimizes the joining time for the non-skewed data.

Figure 5: Repartition Join between Non-Skewed_Customers and Transactions

Step 5- Broadcast join between Skewed Customers and Transactions:

We keep an assumption that the skewness is over a small number of keys. Thus, it’s easy to cache

Skewed Customer DataFrame and broadcast it to all Mappers. Performed Broadcast join between

Skewed_Customers and Transactions, which saved expensive computation of Sort, Shuffle and

Reducer phase. Thereby, drastically reducing the processing time.

 ​Figure 6 : Customers data that is cached

Figure 7: Broadcast Join between Skewed_Customer and Transactions

BENEFITS:

➢ Small number of skewed keys do not become bottleneck during the Reduce phase. As we

saw in Re-Partition Join for skewed dataset, reducer load imbalance takes place which acts

as a bottleneck for the entire process. The algorithm implemented in this report prevents

that from happening.

➢ Computation is done faster. ​Converting a part of the Re-Partition Join over skewed dataset

to a Broadcast Join, which is a map-only job, makes it a faster process.

➢ Efficient use of Reducers. ​Because the load is distributed uniformly over all the Reducers,

they are utilized to their maximum potential.

EXPERIMENTS:

Experiment I :

Initially we created a Customers dataset with 50,000 records and Transactions dataset with 5M

records. We skewed the Transactions Dataset on one key and performed the experiment. We found

out that the time difference between the two methods was not significant. We then moved on to

increase the dataset size.

Experiment II :

The Customers dataset was made of 1M records and Transactions dataset was made of 13M records.

Transactions dataset was skewed over key (Customer Ids): 5, 384, 2486, 7426, 67452, 98775. We

performed the Re-partition join between Customers table and Transaction table on Customer Id. The

process is run on Spark Map Reduce framework and takes a total of 10.236831 seconds.

The time taken to perform the join by implementing the optimization is less. The Broadcast Join

between the Skewed_Customers and Transactions takes 0.019531 seconds. The Re-Partition Join

between the Non-Skewed_Customers and Transactions ​takes 3.772760 seconds. So, the total time

taken to perform the join is 3.792291 seconds which is much lesser compared to the initial

10.236831 seconds.

With these experiments, we see that the optimization saved approximately 60% of the time for

computation, eliminating the imbalance from Reducers.

Figure 8: Time taken by various Map Reduce jobs

